1. 拉格朗日余項表達式
拉格朗日余項的泰勒公式:f'(x)=n+1。泰勒公式是一個用函數在某點的信息描述其附近取值的公式。如果函數滿足一定的條件,泰勒公式可以用函數在某一點的各階導數值做系數構建一個多項式來近似表達這個函數。
函數(function)的定義通常分為傳統定義和近代定義,函數的兩個定義本質是相同的,只是敘述概念的出發點不同,傳統定義是從運動變化的觀點出發,而近代定義是從集合、映射的觀點出發。函數的近代定義是給定一個數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關系可以用y=f(x)表示,函數概念含有三個要素:定義域A、值域B和對應法則f。其中核心是對應法則f,它是函數關系的本質特征。
2. 拉格朗日余項百度百科
拉格朗日(Lagrange)余項: ,其中θ∈(0,1)。 拉格朗日余項實際是泰勒公式展開式與原式之間的一個誤差值,如果其值為無窮小,則表明公式展開足夠準確。 證明: 根據柯西中值定理: 其中θ1在x和x0之間;繼續使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續使用n+1次后得到: 其中θ在x和x0之間;同時: 進而: 綜上可得:
3. 拉格朗日型余項表達式
拉格朗日(Lagrange)余項: ,其中θ∈(0,1)。 拉格朗日余項實際是泰勒公式展開式與原式之間的一個誤差值,如果其值為無窮小,則表明公式展開足夠準確。 證明: 根據柯西中值定理: 其中θ1在x和x0之間;繼續使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續使用n+1次后得到: 其中θ在x和x0之間;
4. 拉格朗日余項表達式例子
簡單說 皮亞諾余項用在求極限地題目中比較多 比如說你把一個函數寫成皮亞諾形式 展開到n階導數再加上個高階無窮小的話,前提條件并不要求函數具有n+1階導數.拉格朗日感覺一般是用在證明題中,由于余項是用拉格朗日中值定理求出來的,所以展開到n階的話,一定要求函數具有n+1階導數.
5. 拉格朗日余項定理
這個定理是高數中比較基礎且比較難的問題。一般是證明題中運用得比較多。比如說證明一個不等式。需要用到公式中的,切記這個是滿足區間中的任意數,要正確理解任意的含義。 舉一個證明的列子,書上也出現過的。證明(b-a)/b<lnb-lna<(b-a)/a要正確證明這個題,要先構造一個函數f(x)=lnx,然后運用拉格朗日中值定理。
6. 拉格朗日余項表達式的正負號
[拉格朗日(Lagrange)中值定理]若函數f(x)滿足條件:
(1)在閉區間[a,b]上連續;
(2)在開區間(a,b)內可導,則在(a,b)內至少存在一點ξ,使得
顯然,羅爾定理是拉格朗日中值定理當f(a)=f(b)時的特殊情形,拉格朗日中值定理是羅爾定理的推廣。